Set 6: Knowledge Representation:
The Propositional Calculus

Chapter 7 R&N

Outline

* Representing knowledge using logic
— Agent that reason logically
— A knowledge based agent

* Representing and reasoning with logic

— Propositional logic
* Syntax
* Semantic
Validity and models
Rules of inference for propositional logic
Resolution
Complexity of propositional inference.

* Reading: Russel and Norvig, Chapter 7

Knowledge bases

Inference engine -———— domain-independent algorithms

Knowledge base -————— domain-specific content

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system):
— Tell it whatit needs to know

Then it can Ask itself what to do - answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
— i.e., data structures in KB and algorithms that manipulate them

Knowledge Representation
Defined by: syntax, semantics

Inference
Assertions > Conclusions
(knowledge base)
Facts Imply Facts

Reasoning: in the syntactic level
Examplexx > y,y>z = X>12

Computer

Semantics

Real-World

The party example

If Alex goes, then Beki goes: A — B
If Chris goes, then Alex goes: C — A
Beki does not go: not B

Chris goes: C

Query: Is it possible to satisfy all these
conditions?

Should | go to the party?

Example of languages

Programming languages:

— Formal languages, not ambiguous, but cannot express
partial information. Not expressive enough.

Natural languages:

— Very expressive but ambiguous: ex: small dogs and
cats.

Good representation language:

— Both formal and can express partial information, can
accommodate inference

Main approach used in Al: Logic-based
languages.

Wumpus World test-bed

Performance measure
— gold +1000, death -1000
— -1 perstep, -10 for using the arrow

Environment

Squares adjacent to wumpus are smelly
— Squares adjacent to pit are breezy

— Glitter iff gold is in the same square

— Shooting kills wumpus if you are facing it
— Shooting uses up the only arrow

— Grabbing picks up gold if in same square

— Releasing drops the gold in same square

Sensors: Stench, Breeze, Glitter, Bump, Scream

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

£ gecT
Sench =
'5-1"—5-;;9:9:" f--a:-q_ -
“Te A e
Stench =
A L
—= ~/Gald} ':*’
T ETTS T
Stench = ;:5'_99:9 =
< Breece — “ Breese —
~— N | —
START
1 2 3 4

Wumpus world characterization

Fully Observable No — only local perception

Deterministic Yes — outcomes exactly specified

Episodic No — sequential at the level of actions

Static Yes — Wumpus and Pits do not move

Discrete Yes

Single-agent? Yes — Wumpus is essentially a natural feature

Exploring a wumpus world

oK

OK OK

Exploring a wumpus world

| oK oK

Exploring a wumpus world

| oK oK

Exploring a wumpus world

||c>|< S OK

Exploring a wumpus world

B OK %i

i'DK S OK

Exploring a wumpus world

Exploring a wumpus world

oK

Exploring a wumpus world

BGS OK

=B
o
B

Logic in general

Logics are formal languages for representing information such that conclusions can be
drawn

Syntax defines the sentences in the language

Semantics define the "meaning" of sentences;
— i.e., define truth of a sentence in a world

E.g., the language of arithmetic
— Xx+2 >y s a sentence; x2+y > {} is not a sentence

— Xx+2 2y is true iff the number x+2 is no less than the numbery

— x+22yistrueinaworld wherex=7,y=1
— x+22yisfalseinaworld wherex=0,y=6

Entailment

* Entailment means that one thing follows from another:
KB Fa

 Knowledge base KB entails sentence a if and only if a is true in
all worlds where KB is true

— E.g., the KB containing “the Giants won” and “the Reds won” entails
“Either the Giants won or the Reds won”

— E.g., xty =4 entails 4 = x+y

— Entailment is a relationship between sentences (i.e. syntax) that is
based on semantics

Models/Possible Worlds

Logicians typically think in terms of models, which are formally structured worlds with
respect to which truth can be evaluated

We say m is a model of a sentence aif ais true in m

M(a) is the set of all models of a

Then KB F a iff M(KB) M(a)

— E.g. KB = Giants won and Reds
won a = Giants won All worlds

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right,

breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices = 8 possible models o l)

Wumpus models

Wumpus models

' .

* KB =wumpus-world rules + observations

Wumpus models

' .

KB =wumpus-world rules + observations
* a,="[1,2] is safe", KB |=a1, proved by model checking

Wumpus models

' .

KB =wumpus-world rules + observations

Wumpus models

* KB =wumpus-world rules + observations
* a, ="[2,2] is safe", KB ,|= a,

Propositional logic: Syntax

* Propositional logic is the simplest logic — illustrates basic ideas

e The proposition symbols P,, P, etc. are sentences

— If Sis a sentence, —S is a sentence (negation)

— IfS;and S, are sentences, S; A S, is a sentence (conjunction)
— IfS;and S, are sentences, S; v S, is a sentence (disjunction)
— IfS; and S, are sentences, S; = S, is a sentence (implication)

— IfS; and S, are sentences, S; < S, is a sentence (biconditional)

Propositional logic: Semantics

P,; means pit in [i,j]. Each world specifies true/false for each proposition symbol

Eg. Py, P, P34
false true false

With these symbols 8 possible worlds can be enumerated automatically.
Rules for evaluating truth with respect to a world w:

—S is true iff Sis false

S{AS, istrueiffS istrue ands, is true

S, VvS, istrueiff Sjistrue or S, is true

S, =S, istrueiff S,isfalse orS,is true

i.e., is false iff S, is true and S, is false

S, &S, istrueiff S;=S,is true and S,=S, is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
—P,, A (P,, VP)=true A (true v false) = true A true = true

Truth tables for connectives

P Q@ | P PANQ PVQP = QP < Q
false| false| true | false | false | true true
false| true | true | false | true | true false
true | false| false| false | true | false false
true | true | false| true | true lrue lrue

Logical equivalence

Two sentences are logically equivalent iff true in same models: a = B8 iff a |= Bandp |=a

(N B) = (BN «) commutativity of A
(aV @) = (BVa) commutativity of V
(@ AB)A7y) = (aA(BA7y)) associativity of A
(avB)Vy) = (aV(BVy)) associativity of
—(—a) = a double-negation elimination
(@ = B) = (-8 = —a) contraposition
(¢ =) = (-~ V [3) implication elimination
(@ & B) = ((a = B)AN(B = «)) biconditional elimination
(A f) = (maV —~fF) de Morgan
—(aV @) = (raAN—fF) de Morgan
(@A (BVY) = ((anp)V(aAy)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

Wumpus world sentences

e Rules

— "Pits cause breezes in adjacent squares”

e Observations

— Let P;; be true if there is a pitin i, j].
— LetB; be true if there is a breeze in [j, j].

1 Pl,l

ﬁBl,l
BZ,l

Wumpus world sentences

KB

Let P, ; be true if there is a pit in [i, j].
Let B ; be true if there is a breeze in [j, j].

- Pl,l

_lBl,].
Bz,1

* "Pits cause breezes in adjacent squares”

(P1,2 Vv P2,1)

Bl 1
B (P1,1 VP,V P3'1)

1<
1<

2,1

Truth table for KB
Biy | Bay | Poa | Pia | Py | Pas | P31 | KB o
false | false | false | false | false | false | false | false | true
false | false | false | false | false | false | true | false | true
false| true | false | false | false | false | false | false | true
false | true | false | false | false | false | true | true | true
false| true | false | false | false | true | false | true | true
false| true | false | false | false | true | true | true | true
false| true | false | false | true | false | false | false | true
true | true | true | true | true | true | true | false | false

04=No pitin (1,2)

0,= N0 pitin (2,2)

Truth Tables

Truth tables can be used to compute the truth value of any wff (well formed formula)
— Can be used to find the truth of (P —>R)—>Q)v-=S

Given n features there are 2" different worlds (interpretations).

Interpretation: any assignment of true and false to atoms

An interpretation satisfies a wff (sentence) if the sentence is assigned true under the

interpretation

A model: An interpretation is a model of a sentence if the sentence is satisfied in that

interpretation.

Satisfiability of a sentence can be determined by the truth-table
— Bat_on and turns-key_on = Engine-starts

A sentence is unsatisfiable or inconsistent if it has no models
— PA(=P)

— (PvQ)A(Pv-Q)A(=PvQ)A(=Pv-Q)

Inference

KB F; o = sentence «¢ can be derived from KB by procedure 2

Consequences of K B are a haystack; « is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: 7 is sound if
whenever KB |, «, it is also true that KB = «

Completeness: ¢ is complete if
whenever K'B |= a, it is also true that KB F; «

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and
complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what is known by the K'B.

Decidability — there exists a procedure that will correctly answer Y/N (valid or not)
for any formula Chapter 6, AIMAZe Chapter 7 31

Gddel's incompleteness theorem (1931) — any deductive system that includes
number theory is either incomplete or unsound.

GOdel's incompleteness theorem

This sentence has no proof.

Validity and satisfiability

A sentence is valid if it is true in all worlds,
e.g., True, Av—-A, A=A, (AA(A=B))=B

A sentence is satisfiable if it is true in some world (has a model)
e.g.,Av B, C

A sentence is unsatisfiable if it is true in no world (has no model)
e.g., AA—A

Entailment is connected to inference via the Deduction Theorem:
KB |=a if and only if (KB = a) is valid
(note : (KB = a) is the same as (—KB v a))

Satisfiability is connected to inference via the following:
KB |=a if and only if (KB A—a) is unsatisfiable

Validity

P H PV H (PV H)N-H (PVHYAN-H) = P
False False False False True
False True True False True
True False True True True
True True True False True

Inference methods

* Proof methods divide into (roughly) two kinds:
— Model checking
* truth table enumeration (always exponential in n)

* improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL), Backtracking
with constraint propagation, backjumping.

* heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

— Deductive systems
* Legitimate (sound) generation of new sentences from old

* Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

* Typically require transformation of sentences into a normal form

Inference by enumeration

Depth-first enumeration of all models is sound and complete

function T'T-ENTAILS? (KB, a) returns true or false

symbols < a list of the proposition symbols in KB and «
return T'T-CHECK-ALL(KB, a, symbols, [|)

function TT-CuECK-ALL(KB, e, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TrUE?(KB, model) then return PL-TRUE?(q, model)
else return true
else do
P + F1RST (symbols); rest «+ REST(symbols)
return T'T-CHECK-ALL(KB, a, rest, EXTEND(P, true, model) and
TT-CHECK- ALL(KB, a, rest, EXTEND(P, false, model)

For n symbols, time complexity is O(2"), space complexity is O(n)

Deductive systems : rules of inference

{ { Modus Ponens or Implication-Elimination: (From an implication and the
‘ premise of the implication, you can infer the conclusion.)

a = B, a

¢ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

| a3
!
‘ ayAa A .. Aa,

Qg
¢ And-Introduction: (From a list of sentences, you can infer their conjunction.)
ay, O3, S 0,
agAaxaA...Aa,
¢ Or-Introduction: (From a sentence, you can infer its disjunction with anything
else at all.)

O
agVarV...Va,

& Double-Negation Elimination: (From a doubly negated sentence, you can infer
a positive sentence.)

==

o .
¢ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
can infer the other one is true.)
aVpj, -3 |
a
¢ Resolution: (This is the most difficult. Because 5 cannot be both true and false,
one of the other disjuncts must be true in one of the premises. Or equivalently, |
implication 1s transitive.)
aVpj, -3V —a = 3, 3 =9

or equivalentl
aVvy e Y —a = 9

I

Figure 6.13 Seven inference rules for propositional logic. The unit resolution rule is a special
case of the resolution rule, which in tum is a special case of the full resolution rule for first-order
logic discussed in Chapter 9. -

Resolution in Propositional Calculus

Using clauses as wffs
— Literal, clauses, conjunction of clauses (CNFs) (PvQv-R)

Resolution rule:

— Resolving(PVQ)and (PV-Q) - P

— Generalize modus ponens, F/B chaining.

— Resolving a literal with its negation yields empty clause.

Resolution rule is sound

Resolution rule is NOT complete:

— P and R entails P V R but you cannot infer P V R from (P and R)
by resolution

Resolution is complete for refutation: adding (-P) and (—R)
to (P and R) we can infer the empty clause.

Decidability of propositional calculus by resolution
refutation: if a sentence w is not entailed by KB then
resolution refutation will terminate without generating the
empty clause.

Summary so far

Propositional logic:
— Syntax : propositional symbols and logical connectives

— Semantics : truth value of a formula wrt true/false assignment
to propositional symbols

Entailment : KB |=a
Validity/satisfiability

Deduction theorem:

— KB |= a iff (KB = a) is valid iff (KB A—a) is unsatisfiable
Inference :

— soundness/completeness

— Model checking vs deductive (inference) systems
Resolution

Today

Resolution

— CNF

— Resolution as search (for empty clause)
Special cases

— Forward chaining

— Backward chaining

Practical propositional inference

— DPLL

— WalkSAT (SLS for PL)

Complexity

Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disfunctions of literals

clauses
Eg.,(AV-B)A(BV-CV-D)
Resolution inference rule (for CNF): complete for propositional logic

LN N, mi V- Vm,
GV VLNV LGa V-V LEVm V- Vmi g Vmj V-V,

where {; and m; are complementary literals. E.g.,

Pi3V Py, P9

.u
3
/

B

P 3

TR g
Ih ™
I__:;l_%
=

Resolution is sound and complete for propositional logic

Chapter 6, AIDMAZe Chapter T a7

Conversion to CNF

Byy < (P, Vv P,,)

1. Eliminate <, replacing a < B with (oo = B)A(B = a).

(Biy = (P vPy)) AP, VP,) =By)

2. Eliminate =, replacing a = with —av B.

(—|Bll1 VP,V P2,1) A (—|(P1,2 Vv P2,1) Vv 31,1)

3. Move — inwards using de Morgan's rules and double-negation:

(—|Bl’1v Pi,V P2,1) A ((—|P1'2/\ —|P2,1) v B1,1)

4. Apply distributivity law (A over v) and flatten:

(_'31,1 VP,V Pz,1) A (—|P1,2 Vv 31,1) A (—|P2,1 Vv 31,1)

Resolution algorithm

* Proof by contradiction, i.e., show KBA—a unsatisfiable

function PL-RESOLUTION(KB, a) returns true or false

clauses + the set of clauses in the CNF representation of KB N —«
new+—{ }
loop do
for each C;, C; in clauses do
resolvents «+ PL-RESOLVE(C}, C5)
if resolvents contains the empty clause then return frue
new < new J resolvents
if new C clauses then return false
clauses + clauses U new

Resolution example

* KB=(B;; < (P1,vP,,))A=B;, a=—P,

‘ ~P, VB, - B,V P,VP,, ‘ —P,V B,

] Bl,lv Pl,z\f’r Bu

| [| I
Pl,l\‘f Pll\‘f{ —|JP111 !_I 181,1‘\.Jilr JPLI\‘»""r BLI!PLE\;“ Pz,f"v” —|P1‘1

‘_'Pz,l‘ ‘_'Pl,z‘

Soundness of resolution

Q 3 0 aVy -~3V9 aVs
False False False False True False
False False True False . True True
False True False True False False
False True True True True True
True False False True True True
True False True True True True
True True False True False True
True True True True True True

Figure 6.14 A truth table demonstrating the soundness of the resolution inference rule. We
have underlined the rows where both premises are true.

The party example

If Alex goes, then Beki goes: A— B
If Chris goes, then Alex goes: C —> A
Beki does not go: not B

Chris goes: C

Query: Is it possible to satisfy all these
conditions?

Should | go to the party?

Example of proof by Refutation

Assume the claim is false and prove inconsistency:

— Example: can we prove that Chris will not come to the A—B,—B
party? C—>A

Prove by generating the desired goal.

Prove by refutation: add the negation of the goal and
prove no model

Proof: from A— B,—B Infer —-A
fromC — A,—A infer —-C

S

—|C\

P

Refutation:

Proof by refutation (inference)

Given a database in clausal normal form KB

" Find a sequence of resolution steps from KB to the empty
clauses

= Use the search space paradigm:
— States: current CNF KB + new clauses

— QOperators: resolution

— Initial state: KB + negated goal

— Goal State: a database containing the empty clause

— Search using any search method

Resolution refutation search strategies

Worst-case memory exponential

Ordering strategies
— Breadth-first, depth-first
— |-level resolvents are generated from level-(I-1) or higher resolvents
— Unit-preference: prefer resolutions with a literal

Set of support:
— Allows resolutions in which one of the resolvents is in the set of support

— The set of support: those clauses coming from negation of the goal or
their descendants.

— The set of support strategy is refutation complete
Input (linear)
— Restricted to resolutions when one member is an input clause

— Input is not refutation complete
— Example: (PV Q), (PV —Q), (=P V Q), (=P V —=Q) have no model

Proof by model checking

* Given a database in clausal normal form KB
" Prove that KB has (no) model — Propositional SAT
= A CNF theory is a constraint satisfaction problem:

— Variables: the propositions

— Domains: {true, false}

— Constraints: clauses (or their truth tables)

— Find a solution to the CSP. If no solution then no model.
— This is the satisfiability question

— Methods: Backtracking arc-consistency = unit
resolution, local search

Properties of propositional inference

Complexity

— Checking truth tables is exponential

— Satisfiability is NP-complete

— Validity (unsatisfiability) is coNP-complete

— However, frequently generating proofs is easy
Propositional logic is monotonic

— If you can entail alpha from knowledge base KB and if you add sentences
to KB, you can infer alpha from the extended knowledge-base as well.

Inference is local
— Tractable Classes: Horn, Definite, 2-SAT
Horn theories:
— Q<--P,P,, ...,P,
— P, Q are atoms (propositions) in the language.
— P, Q may be missing.
Solved by modus ponens or “unit resolution”

Forward and backward chaining

Horn Form (restricted)
KB = conjunction of Horn clauses
Horn clause =
{» proposition symbol; or
{» (conjunction of symbols) = symbol
Eg,CA(B = A)AN(CND = B)

Modus Ponens (for Horn Form): complete for Horn KBs

A1y e eny Gy, &1""\“';\&?1:}[3
o

Can be used with forward chaining or backward chaining.
These algorithms are very natural and run in /inear time

Chapter 6, AIMAZ Chapter 7

Forward chaining algorithm

function PL-FC-ENTAILS? (KB, ¢) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
p+— Pop(agenda)
unless inferred[p] do
inferred[p] + true
for each Horn clause ¢ in whose premise p appears do
decrement count|c|
if count[c] = 0 then do
if HEAD[¢| = ¢ then return true
Puse(HEAD[¢], agenda)
return false

 Forward chaining is sound and complete for Horn KB

Forward chaining

* |dea: fire any rule whose premises are
satisfied in the KB,

— add its conclusion to the KB, until query is found

==

P = Q@

LANM = P P
BANL = M

ANP = L M
AANB = L

: £
B /

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

)
P = Q }
.I LANM = P P
BAL M
A/\PzL E‘>\ru1
F:I AANB = L L
1 A /Q
' . A/ B
I ®
S

Forward chaining example

Forward chaining example

Forward chaining example

Forward chaining example

Backward chaining (BC)

Idea: work backwards from the query g:
to prove q by BC,

check if g is known already, or
prove by BC all premises of some rule concluding g

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

Backward chaining example

(J P = Q

. LAM = P
BAL = M
ANP = L

Backward chaining example

P =Q

LANM = P
BANL = M
ANP = L

Backward chaining example

P =Q

LANM = P
BANL = M
ANP = L

Backward chaining example

Backward chaining example

Backward chaining example

P =Q

LANM = P
BANL = M
ANP = L
AANB = L

Backward chaining example

Backward chaining example

P =Q

LANM = P
BANL = M
ANP = L
AANB = L

Backward chaining example

Backward chaining example

Forward vs. backward chaining

FC is data-driven, automatic, unconscious processing,
— e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,

— e.g., Where are my keys? How do | get into a PhD
program?

Complexity of BC can be much less than linear in size
of KB

Propositional inference in practice

Two families of efficient algorithms for propositional inference:
1. Applyinference rules : KB |=OL if and only if

(KB A—a) in unsatisfiable
(KB = a) is valid

2. Prove that a set of sentences has no model

(KB A—a) in unsatisfiable

 Complete backtracking search algorithms on CNF formulas

— DPLL algorithm (Davis, Putnam, Logemann, Loveland)

* Incomplete local search algorithms
— WalkSAT algorithm

The DPLL algorithm

Determine if a CNF propositional logic sentence is satisfiable.

Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses (A v —B), (=B v —=C), (Cv A), A and B are pure, Cis impure.
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

Modern DPLL
— Conflict-driven clause learning

The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses +— the set of clauses in the CNF representation of s
symbols + a list of the proposition symbols in s
return DPLL(clauses, symbols, ||)

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value + FIND-PURE-SYMBOL(symbols, clauses, model)

The WalkSAT algorithm

Incomplete, local search algorithm

Evaluation function: The min-conflict heuristic of minimizing
the number of unsatisfied clauses

Balance between greediness and randomness

— Pick an unsatisfied clause
* With some probability pick literal to flip randomly
e Otherwise pick a literal that minimizes the min-conflict value

— Restart every once in awhile

The WalkSAT algorithm

function WALKSAT(clauses, p, maz-flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move
maz-flips, number of flips allowed before giving up

model + a random assignment of true/ false to the symbols in clauses
for i = 1 to maz-flips do

if model satisfies clauses then return model

clause +— a randomly selected clause from clauses that is false in model

with probability p flip the value in model of a randomly selected symbol

from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Hard satisfiability problems

 Consider random 3-CNF sentences. e.g.,

(—Dv-BVvC)ABYV—-AV-C)A(—-CVv —BVE)A(EV
—D Vv B)A(BVEV-=C)

m = number of clauses
n = number of symbols

— Hard problems seem to cluster near m/n = 4.3 (critical
point) — phase transition

Hard satisfiability problems

l T T
v
1
0.8 !l
s 06} i
: x
2 04t 1
» i
0.2 E&
0 \I\ P

0 1 2 3 4 5 6 7 3

Clause/symbol ratio m/n

Hard satisfiability problems

Em | | | 1 -F_ 1 | |
1800 | DPLL —— |I+ .
1600 | WalkSAT - HT . |
1400 | \ .
v 1200 + |‘|| \ .
= hl \
= 1000 | || \ .
&2 800 | |'|
600 | .
[X
4[!] B |I x :.l I:}':-_ﬁ‘
200 . L
e
0 e e - 1]

0 1 2 3 4 5 S 7 3

Clause/symbol ratio m/n

Median runtime for 100 satisfiable random 3-CNF sentences, n = 50

Inference-based agents in the wumpus
world

A wumpus-world agent using propositional logic:

B ’ < (Px,y+1 Vv Px,y—l vV I:)x+1,y
Sey & (W, in VW, i VW
Wi vWi, v vW,,
—|W1'1 V —|W1'2

—|W1’1 \V4 —|W1'3

Vv Px—l,y)

x+1,y vV Wx—l,y)

= 64 distinct proposition symbols, 155 sentences

function PL-WumMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
z, y, orientation, the agent's position (init. [1,1]) and orient. (init. right)
visited, an array indicating which squares have been visited, initially false
action, the agent's most recent action, initially null
plan, an action sequence, initially empty

update z,y, orientation, visited based on action

if stench then TELL(KB, S.,) else TELL(KB, — S,)

if breeze then TELL(KB, B,) else TELL(KB, ~ B,)

if glitter then action + grab

else if plan is nonempty then action < Pop(plan)

else if for some fringe square [i,j], ASK(KB, (= Pij A — Wi;)) is true or

for some fringe square [i,j], ASK(KB, (P;; v W;;)) is false then do

plan «+ A*-GRAPH-SEARCH(ROUTE-PB([z,y], orientation, [1,j], visited))
action + Pop(plan)

else action + a randomly chosen move

return action

Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
— syntax: formal structure of sentences
— semantics: truth of sentences wrt models
— entailment: necessary truth of one sentence given another
— inference: deriving sentences from other sentences
— soundess: derivations produce only entailed sentences
— completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated informa-
tion, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power

Chapter 6, AIDMAZe Chapter T 7l

